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ABSTRACT 

Non-negative matrix factorization (NMF) 

has been extensively employed in parts-

based analysis and audio source separation; 

however, the time to convergence of 

iterative NMF algorithms is very sluggish 

on standard personal computers due to their 

computational complexity. In this research, 

we describe high performance parallel 

implementations of NMF, created with 

CUDA for many-core graphics processors 

and OpenMP for shared-memory multicore 

systems. We reduce the running time for a 

20-second audio clip from 18.5 seconds to 

2.6 seconds with OpenMP and 0.6 seconds 

with CUDA. Source separation was 

previously impractical in terms of time, but 

these performance improvements make it 

possible to complete songs in a matter of 

seconds. We shed light on how such large 

speed increases were achieved and promote 

the advancement and 

INTRODUCTION 

Although research on music information 

retrieval (MIR) is becoming more and more 

important, MIR approaches are still not 

widely used in end-user applications. This 

might be partly explained by the 

widespread use of collaborative filtiring 

and hand-labeled data as the foundation for 

online music recommendation services like 

Pandora and Last.fm, but it's also likely 

because many MIR techniques are 

computationally too complex to use outside 

of large compute clusters. If the execution 

time of MIR techniques was sufficiently 

shortened to enable more frequent and 

efficient real-world application, as well as 

faster evaluation and adjustment of 

algorithm parameters, the rate of 

advancement of MIR research may be 

significantly increased. There has been 

some focus on the necessity of producing 

quick implementations, but not 

Optimizing this computing process is 

crucial. In addition to encouraging MIR 

researchers to create and reuse high 

performance parallel implementations of 

significant MIR procedures, the purpose of 

this study is to highlight the huge speedup 

that can be realized by multi-core and 

many-core implementations of multimedia 

applications. We discuss the significance of 

generating parallel MIR applications in 

Section 2. The practical aspects of audio 

source separation based on NMF are 

discussed in Section 3. We present the 

OpenMP and CUDA parallel programming 

models in Section 4. In addition to 

providing information on methods crucial 

for parallelizing MIR applications, Section 

5 describes in detail the architecture of our 

parallel implementations. Secton 6 ends 

with recommendations for maximizing the 

advantages of parallel computing for MIR.  

PARALLELIZING MULTIMEDIA 

APPLICATIONS 

For MIR tasks like beat tracking, rhythm 

summarization, and drum transcription, 

percussion source separation is a helpful 

initial step. The process of rhythmic 

analysis can be significantly streamlined by 

isolating an audio signal that only contains 

percussion instruments. To do this, Helen 

and Virtanen [6] combine NMF with a 

support vector machine (SVM). Similar to 

the one shown in [6], but with additional 

complexity improvements and percussive 

elements added in [7], is the drum track 

extractor we utilize as a goal for 
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performance optimization. In a MATLAB 

implementation running on 20 seconds of 

audio, NMF accounts for almost 80% of the 

CPU time (18.5 seconds of the 23.1 seconds 

total). This indicates that NMF dominates 

computation time in this system. To boost 

the rate of throughput, the 

NON-NEGATIVE MATRIX 

FACTORIZATION FOR AUDIO 

SOURCE SEPARATION  

The process of decomposing a spectrogram 

matrix into two matrices that contain 

source-wise spectral conattributions and 

time-varying gains is known as non-

negative matrix factorization, and it can be 

applied to audio source separation. NMF is 

sometimes referred to as the optimization 

problem. 

Cost Function  

Rather than using the mean-squared error 

between X and the product WH as the cost 

function, we use a matrix verySion of the 

Kullback-Leibler divergence: 

 

It has been shown in [3] that this divergence 

cost function achieves better audio source 

separation results than mean-squared error.  

Multiplicative Updates 

 Lee and Seung [14] have proposed an 

algorithm based on gradient-based 

multiplicative updates for minimizing the 

above optimization problem. For the 

divergence cost function, we alternate 

between updates on the two matrices using 

the following expressions 

 

In element-wise division, elementwise 

multiplication is represented by ".∗," and 

row and column sums are calculated using 

1 as a M × N matrix of ones. It is significant 

to note that the aforementioned updates 

may not converge to a global minimum 

because the optimization problem is not 

convex in both W and H. Researchers 

usually employ many random 

initializations and select the best outcome 

to overcome this issue. Since the time to 

convergence can be measured in minutes 

while working with just seconds of audio, it 

is not possible to add extra computing time 

by conducting multiple trials without a 

compelling reason.

 

Figure 1. A spectrogram matrix for a basic 

rock beat surrounded by its factor matrices 

W and H computed using NMF. The 

component-wise gain matrix H has been 

aligned with the corresponding drum score.  

 

Initialization 

Alternative methods employ a deterministic 

initialization that is determined by the 

domain knowledge or the matrix X's 

structure or statistics. Our method is based 

on the latter [7], where the initial columns 

of W are a subset of discrete cosine 

transform basis functions and typical drum 

spectra. For our purposes, the initialization 

decision can influence the total number of 

iterations needed for convergence, but it has 

no direct impact on how quickly the updates 

in equation (2) are carried out. We will 

solely concentrate on optimizing the speed 

of a predetermined number of iterations 
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rather than the time to convergence in order 

to get rid of this dependency.  

Matrix Dimensions  

The dimonotonality of the spectrogram 

matrix that is to be facetorized is another 

factor that needs to be taken into account. 

Each analysis frame is extracted using a 

length 4096 Hann window, and the window 

is shifted in time using a hop size of 256 in 

order to accurately represent drum sounds 

in both time and frequency. 20 seconds of 

audio This provides us with a matrix of size 

2049×3445 (number of positive frequency 

bins × number of analysis frames), sampled 

at 44.1 kHz. At higher frequencies, we do 

not need such a high frequency resolution 

(∼10Hz), so we use a Bark-based 
perceptual dimensionality reduction [7] on 

the columns of X to obtain a 512 × 3445 

matrix. Following the execution of NMF on 

this reduced matrix, we 

OPENMP AND CUDA  

OpenMP  

is a standardized API that enables parallel 

exection on shared-memory multi-core 

machines [15]. OpenMP has been 

implemented for C, C++, and Fortran and is 

supported in Visual C++ 2005, the Intel 

compiler, and gcc 4.2 and above.The beauty 

of OpenMP lies in its ability to parallelize 

existing sequential code by annotating it 

with compiler directives. OpenMP 

automatically forks threads that execute on 

separate processors according to the 

directives. OpenMP very conveniently 

parallelizes loops containing independent 

iterations using a single directive. The 

element-wise array multiplication shown 

below can be split amongst nt cores using a 

leading #pragma directive 

 

is a standardized API that allows for 

simultaneous execution on multi-core, 

shared-memory computers [15]. OpenMP 

is supported in Visual C++ 2005, the Intel 

compiler, and gcc 4.2 and higher. It has 

been implemented for C, C++, and 

Fortran.The benefit of OpenMP is that it 

can parallelize sequential code that already 

exists by adding compiler directives to it. In 

accordance with the guidelines, OpenMP 

automatically forks threads that run on 

different processors. With just one 

directive, OpenMP extremely conveniently 

parallelizes loops with separate iterations. 

Using a leading #pragma directive, the 

element-wise array multiplication 

displayed below can be divided among nt 

cores.

 

CUDA  

includes the extensions to the C 

programming language that are used to 

program the CUDA architecture for general 

purpose computation, as well as the parallel 

device architecture used in more recent 

Nvidia GPUs. The host, or CPU, runs 

CUDA code that has been compiled with 

Nvidia'snvcc and then sends commands to 

the device, or GPU. While device code 

consists of kernels—functions written to 

execute in a Single Program, Multiple Data 

(SPMD) fashion—each thread running on 

the device during kernel invocation 

executes the kernel code independently on 

whatever chunk of data is assigned to the 

thread, host code typically consists of 

control flow instructions and memory 

movement operations between host 

memory and device memory. Memory can 

also be shared by groups of threads. With 
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CUDA 2.1,

 

Device kernels are physically run in units 

called warps, which are collections of 32 

neighboring threads. When a group of 

threads can execute in a fully SIMD (Single 

Instruction, Multiple Data) fashion—that 

is, with each thread in the warp doing the 

same action but on distinct pieces of data—

warps operate at their most efficient. The 

impacted threads must run sequentially 

rather than concurrently when control flow 

instructions are inserted into a kernel to 

cause threads inside the same warp to 

execute separate code (this is known as a 

"divergent" warp). Since CUDA does not 

currently enable double-precision 

hardware, in this study we concentrate on 

single-precision implementations. High 

throughput on highly data-parallel 

computations is the goal of CUDA's design. 

Fortunately, the majority of multimedia 

apps, particularly those for music, show a 

wide 

PARALLEL IMPLEMENTATION 

Important Kernels 

We break down the updates in eq. (2) into 

the key computing kernels, such as 

element-wise vector arithmetic, dense 

matrix multiplication, and column and row 

summing, in order to better organize our 

NMF implementation. Although each 

kernel will be called one after the other, 

each one will be highly parallelized and 

optimized. In terms of floating point 

operations (flops), the Single-precision 

GEneral Matrix Multiply, or SGEMM, 

kernel will perform the most work. 

Equation (2) requires approximately 423 

Mflops for the four SGEMMs, given the 

matrix dimensions given at the end of 

Section 3.4. About 3.6 Mflops are needed 

for the element-divides, 0.1 Mflops for the 

sums, and 0.1 Mflops for the element-

multiplies. Every element in the formula 

has a little constant (called EPS) added to it 

to prevent dividing by zero. 

OpenMP Implementation  

As previously mentioned, OpenMP 

simplifies the process of parallelizing 

sequential code for a multi-core shared 

memory system. We may parallelize the 

sums and element-wise arithmetic by 

utilizing the two kinds of for pragmas from 

Section 4.1. It makes sense to parallelize the 

element splits' loop because they are many, 

sluggish, and do not call for inter-thread 

communication. Parallelizing the reduction 

loop actually resulted in a slower kernel 

since the row and column sums demand a 

lot of communication for the amount of 

addition work done per core (because the 

partial sum computed by one core must be 

transferred to another core). In addition to 

having a lot of addition, the greater sum in 

the divergence cost function also involves a 

sluggish log-based computation, thus the 

effort to communication

 

Figure 2. Performance results for the 

OpenMP implementation on a dual-socket 

Intel Core i7 920 

CUDA Implementation  

A CUDA implementation requires extra 

planning when writing. The matrices must 
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first be copied to the GPU's memory. Avoid 

using copies between the CPU and GPU 

unless necessary for initialization or result 

return, as they are quite sluggish (preferably 

3 GB/s over the PCI bus). This means that 

even while some operations are better 

suited for the CPU, in our scenario it's 

preferable to complete all of the matrix 

computations on the GPU to avoid 

unnecessary copies. Completely data-

parallel, element-wise arithmetic can be 

performed with ease using code akin to that 

found in Section 4.2. Some kernels that are 

not as easily parallelized on CUDA, like the 

SGEMMs and sums, need some inter-

thread communication. 

SGEMM  

Fortunately, the CUBLAS 2.1 library 

contains an optimized SGEMM function 

that, on modern GPUs, delivers 60% of 

theoretical peak performance for big 

matrices [17]. 60% of peak for the Geforce 

GTX 280 translates to 373 Gflops/s. The 

CUBLAS SGEMM on this GPU achieves 

117, 147, and 104 Gflops/s, respectively, 

for The dimensions of our particular matrix 

multiplications are [512 × 30 × 3445], [30 

× 512 × 3445], and [512 × 3445 × 30]. Even 

in these relatively modest SGEMM cases, 

we should be able to do better. Upon 

reviewing the publication [17], which 

describes the methods used in the present 

CUBLAS SGEMM, we discovered that 

threads function in the matrix sub-blocks of 

dimensions 16 and 64. Given this, we tried 

to zero pad our matrices to multiples of 16 

so that for each SGEMM, we got 264, 196, 

and 85 Gflops/s (not including operations 

on zero-padded sections). size. Since the 

NMF algorithm uses two SGEMMs of the 

first size, this results in an SGEMM running 

time reduction from 0.71 to 0.52 seconds 

for 200 iterations.  

Reduction  

We will need to create our own procedures 

because standard libraries do not have 

parallel reductions like sums, mins, and 

maxes. The CUDA SDK contains a lesson 

on maximizing reductions in CUDA [18]. 

This overview demonstrates how to obtain 

a 30× speedup for a 4.2 × 106 length sum 

over a naive binary tree implementation, 

and discusses optimization methodologies 

that can be utilized to dramatically 

accelerate huge power-of-2-size reductions. 

There are several techniques to design a 

binary tree reduction. A thread block's 

shared memory allows us to carry out a 

number of two-element reductions. Figure 

3 presents two approaches to organizing the 

overall decrease. Each thread in the thread 

block in both versions begins by

 

Figure 3. Two methods of shared 

memory reduction  

We can compute all 30 column or row sums 

at once in order to generate more concurrent 

work (in terms of thread blocks). To 

achieve this, one launches a two-

dimensional grid of thread blocks, where 

the thread blocks inside each individual 

sum are indexed in the second dimension, 

while the first dimension indicates which of 

the thirty sums is being computed. As seen 

in Figure 4, this last improvement resulted 

in an astounding speedup for the 30 smaller 
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sums.

 

Figure 4. Cumulative effect of various 

optimizations on running time of 200 

iterations of the 30 column sums  

CUDA Performance Results  

Figure 5 displays the outcomes of the 

CUDA implementation in comparison to 

the OpenMP and Matlab implementations. 

The dimensionality reduction method 

described in Section 3.4 is applied in the 

Matlab implementation, which is optimized 

for singleprecision vector operations. Our 

Matlab implementation outperforms a 

simple, non-dimensionality-reduction 

Matlab implementation by a factor of three. 

On the same system, the OpenMP version 

outperforms the Matlab version by a factor 

of two and exhibits a notable increase in 

speed when utilizing additional threads on 

the Core i7. Nevertheless, the non-linear 

speedup observed between 1 and 14 threads 

implies that the OpenMP version may not 

scale well to additional cores. Our CUDA 

implementation performs admirably on the 

older Geforce 8600 GTS, which sports four 

1.46 GHz multiprocessors. The more recent 

Geforce

 

Figure 5. Running time comparison for 200 

iterations of 512×30×3445 NMF using 

optimized implementations in Matlab, 

OpenMP, and CUDA on different 

architectures 

 version on the Core i7 920. Both of these 

GPUs are marketed to consumers for 

desktop gaming and graphics so are quite 

affordable compared to many of the 

professionalgrade cards. Additional 

speedup is possible with future GPUs with 

more multiprocessors and greater memory 

bandwidth. As stated earlier, CUDA 

programs scale well if kernels have a large 

number of independent thread blocks. The 

relatively small size of the matrix 

operations doesn’t guarantee strong scaling 

in the future, but in this case, additional 

speedup is not necessarily required. For 

audio source separation, the NMF already 

performs at 33× real-time on the GTX 280.  

DISCUSSION AND FUTURE WORK  

Parallelizing the remaining steps of the 

entire source separation process would be 

the next step after attaining such a large 

speedup on the NMF phase of percussive 

source separation. Since individual audio 

frames may be analyzed independently, 

these processes are all fairly data-parallel 

and would benefit from parallelization, 

much like the majority of signal processing 

and machine learning algorithms. It's 

crucial to keep in mind that while CUDA 

can achieve better performance on more 

recent GPUs, OpenMP is a better place to 



Journal of Management & Entrepreneurship UGC Care Group I Journal  
ISSN 2229-5348                                                                                                Vol-11 Issue-01 Jan 2022 

start for programmers who are already 

familiar with C programming. This is 

especially true when choosing between the 

two when writing MIR applications. 

Additionally, we must keep in mind that 

parallel MIR applications may not always 

require coding. 
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