
Journal of Management & Entrepreneurship UGC Care Group I Journal
ISSN 2229-5348 Vol-11 Issue-01 Jan 2022

Accelerating nonnegative matrix factorization on many-core and multicore

systems

Mr. MOLUGUMATI PREMCHAND1, Mrs. K. RAMA LAKSHMI2 ,Mrs. DONGA HINDUJA3 ,

ASST PROFESSOR1 ,ASSISTANT PROFESSOR2,3 , DEPARTMENT OF ECE,

SWARNANDHRA COLLEGE OF ENGINEERING AND TECHNOLOGY, NARASAPUR

ABSTRACT

Non-negative matrix factorization (NMF)

has been extensively employed in parts-

based analysis and audio source separation;

however, the time to convergence of

iterative NMF algorithms is very sluggish

on standard personal computers due to their

computational complexity. In this research,

we describe high performance parallel

implementations of NMF, created with

CUDA for many-core graphics processors

and OpenMP for shared-memory multicore

systems. We reduce the running time for a

20-second audio clip from 18.5 seconds to

2.6 seconds with OpenMP and 0.6 seconds

with CUDA. Source separation was

previously impractical in terms of time, but

these performance improvements make it

possible to complete songs in a matter of

seconds. We shed light on how such large

speed increases were achieved and promote

the advancement and

INTRODUCTION

Although research on music information

retrieval (MIR) is becoming more and more

important, MIR approaches are still not

widely used in end-user applications. This

might be partly explained by the

widespread use of collaborative filtiring

and hand-labeled data as the foundation for

online music recommendation services like

Pandora and Last.fm, but it's also likely

because many MIR techniques are

computationally too complex to use outside

of large compute clusters. If the execution

time of MIR techniques was sufficiently

shortened to enable more frequent and

efficient real-world application, as well as

faster evaluation and adjustment of

algorithm parameters, the rate of

advancement of MIR research may be

significantly increased. There has been

some focus on the necessity of producing

quick implementations, but not

Optimizing this computing process is

crucial. In addition to encouraging MIR

researchers to create and reuse high

performance parallel implementations of

significant MIR procedures, the purpose of

this study is to highlight the huge speedup

that can be realized by multi-core and

many-core implementations of multimedia

applications. We discuss the significance of

generating parallel MIR applications in

Section 2. The practical aspects of audio

source separation based on NMF are

discussed in Section 3. We present the

OpenMP and CUDA parallel programming

models in Section 4. In addition to

providing information on methods crucial

for parallelizing MIR applications, Section

5 describes in detail the architecture of our

parallel implementations. Secton 6 ends

with recommendations for maximizing the

advantages of parallel computing for MIR.

PARALLELIZING MULTIMEDIA

APPLICATIONS

For MIR tasks like beat tracking, rhythm

summarization, and drum transcription,

percussion source separation is a helpful

initial step. The process of rhythmic

analysis can be significantly streamlined by

isolating an audio signal that only contains

percussion instruments. To do this, Helen

and Virtanen [6] combine NMF with a

support vector machine (SVM). Similar to

the one shown in [6], but with additional

complexity improvements and percussive

elements added in [7], is the drum track

extractor we utilize as a goal for

Journal of Management & Entrepreneurship UGC Care Group I Journal
ISSN 2229-5348 Vol-11 Issue-01 Jan 2022

performance optimization. In a MATLAB

implementation running on 20 seconds of

audio, NMF accounts for almost 80% of the

CPU time (18.5 seconds of the 23.1 seconds

total). This indicates that NMF dominates

computation time in this system. To boost

the rate of throughput, the

NON-NEGATIVE MATRIX

FACTORIZATION FOR AUDIO

SOURCE SEPARATION

The process of decomposing a spectrogram

matrix into two matrices that contain

source-wise spectral conattributions and

time-varying gains is known as non-

negative matrix factorization, and it can be

applied to audio source separation. NMF is

sometimes referred to as the optimization

problem.

Cost Function

Rather than using the mean-squared error

between X and the product WH as the cost

function, we use a matrix verySion of the

Kullback-Leibler divergence:

It has been shown in [3] that this divergence

cost function achieves better audio source

separation results than mean-squared error.

Multiplicative Updates

 Lee and Seung [14] have proposed an

algorithm based on gradient-based

multiplicative updates for minimizing the

above optimization problem. For the

divergence cost function, we alternate

between updates on the two matrices using

the following expressions

In element-wise division, elementwise

multiplication is represented by ".∗," and

row and column sums are calculated using

1 as a M × N matrix of ones. It is significant

to note that the aforementioned updates

may not converge to a global minimum

because the optimization problem is not

convex in both W and H. Researchers

usually employ many random

initializations and select the best outcome

to overcome this issue. Since the time to

convergence can be measured in minutes

while working with just seconds of audio, it

is not possible to add extra computing time

by conducting multiple trials without a

compelling reason.

Figure 1. A spectrogram matrix for a basic

rock beat surrounded by its factor matrices

W and H computed using NMF. The

component-wise gain matrix H has been

aligned with the corresponding drum score.

Initialization

Alternative methods employ a deterministic

initialization that is determined by the

domain knowledge or the matrix X's

structure or statistics. Our method is based

on the latter [7], where the initial columns

of W are a subset of discrete cosine

transform basis functions and typical drum

spectra. For our purposes, the initialization

decision can influence the total number of

iterations needed for convergence, but it has

no direct impact on how quickly the updates

in equation (2) are carried out. We will

solely concentrate on optimizing the speed

of a predetermined number of iterations

Journal of Management & Entrepreneurship UGC Care Group I Journal
ISSN 2229-5348 Vol-11 Issue-01 Jan 2022

rather than the time to convergence in order

to get rid of this dependency.

Matrix Dimensions

The dimonotonality of the spectrogram

matrix that is to be facetorized is another

factor that needs to be taken into account.

Each analysis frame is extracted using a

length 4096 Hann window, and the window

is shifted in time using a hop size of 256 in

order to accurately represent drum sounds

in both time and frequency. 20 seconds of

audio This provides us with a matrix of size

2049×3445 (number of positive frequency

bins × number of analysis frames), sampled

at 44.1 kHz. At higher frequencies, we do

not need such a high frequency resolution

(∼10Hz), so we use a Bark-based
perceptual dimensionality reduction [7] on

the columns of X to obtain a 512 × 3445

matrix. Following the execution of NMF on

this reduced matrix, we

OPENMP AND CUDA

OpenMP

is a standardized API that enables parallel

exection on shared-memory multi-core

machines [15]. OpenMP has been

implemented for C, C++, and Fortran and is

supported in Visual C++ 2005, the Intel

compiler, and gcc 4.2 and above.The beauty

of OpenMP lies in its ability to parallelize

existing sequential code by annotating it

with compiler directives. OpenMP

automatically forks threads that execute on

separate processors according to the

directives. OpenMP very conveniently

parallelizes loops containing independent

iterations using a single directive. The

element-wise array multiplication shown

below can be split amongst nt cores using a

leading #pragma directive

is a standardized API that allows for

simultaneous execution on multi-core,

shared-memory computers [15]. OpenMP

is supported in Visual C++ 2005, the Intel

compiler, and gcc 4.2 and higher. It has

been implemented for C, C++, and

Fortran.The benefit of OpenMP is that it

can parallelize sequential code that already

exists by adding compiler directives to it. In

accordance with the guidelines, OpenMP

automatically forks threads that run on

different processors. With just one

directive, OpenMP extremely conveniently

parallelizes loops with separate iterations.

Using a leading #pragma directive, the

element-wise array multiplication

displayed below can be divided among nt

cores.

CUDA

includes the extensions to the C

programming language that are used to

program the CUDA architecture for general

purpose computation, as well as the parallel

device architecture used in more recent

Nvidia GPUs. The host, or CPU, runs

CUDA code that has been compiled with

Nvidia'snvcc and then sends commands to

the device, or GPU. While device code

consists of kernels—functions written to

execute in a Single Program, Multiple Data

(SPMD) fashion—each thread running on

the device during kernel invocation

executes the kernel code independently on

whatever chunk of data is assigned to the

thread, host code typically consists of

control flow instructions and memory

movement operations between host

memory and device memory. Memory can

also be shared by groups of threads. With

Journal of Management & Entrepreneurship UGC Care Group I Journal
ISSN 2229-5348 Vol-11 Issue-01 Jan 2022

CUDA 2.1,

Device kernels are physically run in units

called warps, which are collections of 32

neighboring threads. When a group of

threads can execute in a fully SIMD (Single

Instruction, Multiple Data) fashion—that

is, with each thread in the warp doing the

same action but on distinct pieces of data—

warps operate at their most efficient. The

impacted threads must run sequentially

rather than concurrently when control flow

instructions are inserted into a kernel to

cause threads inside the same warp to

execute separate code (this is known as a

"divergent" warp). Since CUDA does not

currently enable double-precision

hardware, in this study we concentrate on

single-precision implementations. High

throughput on highly data-parallel

computations is the goal of CUDA's design.

Fortunately, the majority of multimedia

apps, particularly those for music, show a

wide

PARALLEL IMPLEMENTATION

Important Kernels

We break down the updates in eq. (2) into

the key computing kernels, such as

element-wise vector arithmetic, dense

matrix multiplication, and column and row

summing, in order to better organize our

NMF implementation. Although each

kernel will be called one after the other,

each one will be highly parallelized and

optimized. In terms of floating point

operations (flops), the Single-precision

GEneral Matrix Multiply, or SGEMM,

kernel will perform the most work.

Equation (2) requires approximately 423

Mflops for the four SGEMMs, given the

matrix dimensions given at the end of

Section 3.4. About 3.6 Mflops are needed

for the element-divides, 0.1 Mflops for the

sums, and 0.1 Mflops for the element-

multiplies. Every element in the formula

has a little constant (called EPS) added to it

to prevent dividing by zero.

OpenMP Implementation

As previously mentioned, OpenMP

simplifies the process of parallelizing

sequential code for a multi-core shared

memory system. We may parallelize the

sums and element-wise arithmetic by

utilizing the two kinds of for pragmas from

Section 4.1. It makes sense to parallelize the

element splits' loop because they are many,

sluggish, and do not call for inter-thread

communication. Parallelizing the reduction

loop actually resulted in a slower kernel

since the row and column sums demand a

lot of communication for the amount of

addition work done per core (because the

partial sum computed by one core must be

transferred to another core). In addition to

having a lot of addition, the greater sum in

the divergence cost function also involves a

sluggish log-based computation, thus the

effort to communication

Figure 2. Performance results for the

OpenMP implementation on a dual-socket

Intel Core i7 920

CUDA Implementation

A CUDA implementation requires extra

planning when writing. The matrices must

Journal of Management & Entrepreneurship UGC Care Group I Journal
ISSN 2229-5348 Vol-11 Issue-01 Jan 2022

first be copied to the GPU's memory. Avoid

using copies between the CPU and GPU

unless necessary for initialization or result

return, as they are quite sluggish (preferably

3 GB/s over the PCI bus). This means that

even while some operations are better

suited for the CPU, in our scenario it's

preferable to complete all of the matrix

computations on the GPU to avoid

unnecessary copies. Completely data-

parallel, element-wise arithmetic can be

performed with ease using code akin to that

found in Section 4.2. Some kernels that are

not as easily parallelized on CUDA, like the

SGEMMs and sums, need some inter-

thread communication.

SGEMM

Fortunately, the CUBLAS 2.1 library

contains an optimized SGEMM function

that, on modern GPUs, delivers 60% of

theoretical peak performance for big

matrices [17]. 60% of peak for the Geforce

GTX 280 translates to 373 Gflops/s. The

CUBLAS SGEMM on this GPU achieves

117, 147, and 104 Gflops/s, respectively,

for The dimensions of our particular matrix

multiplications are [512 × 30 × 3445], [30

× 512 × 3445], and [512 × 3445 × 30]. Even

in these relatively modest SGEMM cases,

we should be able to do better. Upon

reviewing the publication [17], which

describes the methods used in the present

CUBLAS SGEMM, we discovered that

threads function in the matrix sub-blocks of

dimensions 16 and 64. Given this, we tried

to zero pad our matrices to multiples of 16

so that for each SGEMM, we got 264, 196,

and 85 Gflops/s (not including operations

on zero-padded sections). size. Since the

NMF algorithm uses two SGEMMs of the

first size, this results in an SGEMM running

time reduction from 0.71 to 0.52 seconds

for 200 iterations.

Reduction

We will need to create our own procedures

because standard libraries do not have

parallel reductions like sums, mins, and

maxes. The CUDA SDK contains a lesson

on maximizing reductions in CUDA [18].

This overview demonstrates how to obtain

a 30× speedup for a 4.2 × 106 length sum

over a naive binary tree implementation,

and discusses optimization methodologies

that can be utilized to dramatically

accelerate huge power-of-2-size reductions.

There are several techniques to design a

binary tree reduction. A thread block's

shared memory allows us to carry out a

number of two-element reductions. Figure

3 presents two approaches to organizing the

overall decrease. Each thread in the thread

block in both versions begins by

Figure 3. Two methods of shared

memory reduction

We can compute all 30 column or row sums

at once in order to generate more concurrent

work (in terms of thread blocks). To

achieve this, one launches a two-

dimensional grid of thread blocks, where

the thread blocks inside each individual

sum are indexed in the second dimension,

while the first dimension indicates which of

the thirty sums is being computed. As seen

in Figure 4, this last improvement resulted

in an astounding speedup for the 30 smaller

Journal of Management & Entrepreneurship UGC Care Group I Journal
ISSN 2229-5348 Vol-11 Issue-01 Jan 2022

sums.

Figure 4. Cumulative effect of various

optimizations on running time of 200

iterations of the 30 column sums

CUDA Performance Results

Figure 5 displays the outcomes of the

CUDA implementation in comparison to

the OpenMP and Matlab implementations.

The dimensionality reduction method

described in Section 3.4 is applied in the

Matlab implementation, which is optimized

for singleprecision vector operations. Our

Matlab implementation outperforms a

simple, non-dimensionality-reduction

Matlab implementation by a factor of three.

On the same system, the OpenMP version

outperforms the Matlab version by a factor

of two and exhibits a notable increase in

speed when utilizing additional threads on

the Core i7. Nevertheless, the non-linear

speedup observed between 1 and 14 threads

implies that the OpenMP version may not

scale well to additional cores. Our CUDA

implementation performs admirably on the

older Geforce 8600 GTS, which sports four

1.46 GHz multiprocessors. The more recent

Geforce

Figure 5. Running time comparison for 200

iterations of 512×30×3445 NMF using

optimized implementations in Matlab,

OpenMP, and CUDA on different

architectures

 version on the Core i7 920. Both of these

GPUs are marketed to consumers for

desktop gaming and graphics so are quite

affordable compared to many of the

professionalgrade cards. Additional

speedup is possible with future GPUs with

more multiprocessors and greater memory

bandwidth. As stated earlier, CUDA

programs scale well if kernels have a large

number of independent thread blocks. The

relatively small size of the matrix

operations doesn’t guarantee strong scaling

in the future, but in this case, additional

speedup is not necessarily required. For

audio source separation, the NMF already

performs at 33× real-time on the GTX 280.

DISCUSSION AND FUTURE WORK

Parallelizing the remaining steps of the

entire source separation process would be

the next step after attaining such a large

speedup on the NMF phase of percussive

source separation. Since individual audio

frames may be analyzed independently,

these processes are all fairly data-parallel

and would benefit from parallelization,

much like the majority of signal processing

and machine learning algorithms. It's

crucial to keep in mind that while CUDA

can achieve better performance on more

recent GPUs, OpenMP is a better place to

Journal of Management & Entrepreneurship UGC Care Group I Journal
ISSN 2229-5348 Vol-11 Issue-01 Jan 2022

start for programmers who are already

familiar with C programming. This is

especially true when choosing between the

two when writing MIR applications.

Additionally, we must keep in mind that

parallel MIR applications may not always

require coding.

REFERENCES

Maryas contributions to MIREX 2007 [1]

G. Tzanetakis, MIREX 2007, 2007. Visit

this website:

http://www.musicir.org/mirex/2008/abs/mi

rex2007.pdf

In Nature, Vol. 401, pp. 788–791, 1999, D.

Lee and H. Seung published "Learning the

parts of objects by non-negative matrix

factorization."

 [3] T. Virtanen: IEEE Transactions on

Audio, Speech, and Language Processing,

Vol. 15, No. 3, pp. 1066–1074, 2007.

"Monaural sound source separation by

nonnegative matrix factorization with

temporal continuity and sparseness

criteria."

In the IEEE Workshop on Applications of

Signal Processing to Audio and Acoustics,

P. Smaragdis and J. Brown discussed "Non-

negative matrix factorization for

polyphonic music transcription," which

was published in 2003.

 [5] In the Proceedings of the International

Conference on Digital Audio Effects

(DAFx), 2007, A. Cont, S. Dubnov, and D.

Wessel present "Realtime Multiple-Pitch

and Multiple-Instrument Recognition for

Music Signals Using Sparse Non-Negative

Constraints."

