
Journal of Management & Entrepreneurship

ISSN 2229-5348

UGC Care Group I Journal

Vol-13 Issue-01 April 2024

Is Two Factor Authentication Enough to Secure your System: A

Study

1 Monica Lamba, 2Rajesh Kumar Jaiswal, 3 Udit Kashyap, 4 Sudhir Kumar Lakhan

1,Associate Professor, Department of ECE, Arya College of Engineering, Jaipur, Rajasthan, India

2Associate Professor, Department of MBA, Arya College of Engineering, Jaipur, Rajasthan, India

3,4B.Tech Student, Department of CSE, Arya College of Engineering, Jaipur, Rajasthan, India

lambamonica346@gmail.com, raj84jaiswal@rediffmail.com, uditkashyap007@gmail.com,

skumar63002@gmail.com

Abstract: In this study, we explore the

significance of constantly enhancing

authentication methods to combatthe increasing

cyber risks. As cybercrimes continue to soar,

safeguarding online accounts becomes

essential. We specifically analyze the

effectiveness of two-factor authentication

(2FA) in bolstering account security. By

conducting a thorough review of relevant

literature and examining real-life examples, we

assess the strengths and limitations of 2FA. Our

research also delves into the changing cyber

environment and factors that impact the

adoption of 2FA. Our findings shed light on

how 2FA can effectively mitigate common

threats such as phishing and credential

breaches. Additionally, we explore new

authentication technologies that are on the

horizon.

1. Introduction

In today's digital age, protecting our personal

and sensitive information is more important

than ever. With traditional methods like

passwords becoming more vulnerable to cyber-

attacks, it's crucial to implement stronger

security measures. Two-factor authentication

(2FA) has become a popular solution to enhance

account security by adding an extra layer of

verification before granting access. In this

overview, we will discuss 2FA (two-factor

authentication), including its principles,

mechanisms, benefits, and challenges. We will

also explore how 2FA helps address modern

cybersecurity issues and prevents unauthorized

access to online accounts. Nowadays, more

applications are incorporating various forms of

two-factor authentication (2FA) or multi-factor

authentication (MFA) into their testing

processes. This paper offers a comprehensive

look at the common methods used in 2FA and

provides detailed instructions on how to assess

them during testing.

2. How does Two-Factor

Authentication Function

Step by Step?

Two-factor authentication is the idea of using

two different types of "factors" for security.

Typically, these factors are categorized as

"something you know," "something you have,"

"something you are," or "somewhere you

are."For example, a password is “something

you know”: just having two passwords doesn’t

add significant security in general, but requiring

you to be in your office or have your phone with

you can add security: someone who has phished

your password is less likely to be in your office

or have also stolen your phone. Most 2FA

implementations expect the second factor to be

“something you have”, and that’s what we’ll

focus on here. These fall into a few common

implementations:

2.1 A device that generates a code

These were among the earliest implementations

of two-factor authentication (such as via S/KEY

or a physical token with a numeric display). In

these, some offline mechanism generates a

code, usually a six-digit number, and you type

it in to your computer to log in. The idea is that

that code could only be generated by the

physical device you’re using (and the server)

because of a shared secret, so if they match, you

know that the person logging in has access to

Journal of Management & Entrepreneurship

ISSN 2229-5348

UGC Care Group I Journal

Vol-13 Issue-01 April 2024

the physical device. This is also among the most

common mechanisms of two-factor support

these days, due to the ubiquity of TOTP

implementations (available in software such as

Google Authenticator, as well as many

associated applications such as Authy,

Microsoft Authenticator, FreeOTP, and so on).

In general, if you’ve had to point your phone at

a QR code to set up 2FA, you’re probably using

TOTP. TOTP uses a shared secret that both your

device and the server know, and combine with

the current time to generate a number that both

sides can agree on, but would be difficult for

someone without the secret to guess. This is

effectively the same principle behind RSA

SecurID tokens. HOTP, a slight variant, simply

uses a counter for the number of codes you’ve

generated instead of the time, and S/KEY is also

usage-based, but uses a different mechanism to

generate the codes. In all of these cases, most

servers expect that your clock and theirs – or

your count of how many codes you’ve used and

theirs – aren’t exactly in sync, so they’ll accept

a small number of codes “around” the right one

to provide some error recovery.

2.2 A device that does a cryptographic

handshake

These are a bit more modern, because they rely

on much more integration with your browser or

operating system. Typically, these are using

WebAuthn as part of FIDO2, and are along the

lines of a YubiKey or other USB device you tap

to authenticate, although WebAuthn is now

supported natively on iOS and macOS devices.

These “security keys” use a private key that is

intended to never leave the device to sign a

challenge from the server, proving that the

device is present. As an added benefit,

WebAuthn challenges specify the domain name

you’re logging into, so, for example,

example1.com and example2.com can’t

impersonate one another. This helps alleviate

phishing concerns, because even if an attacker

can convince you to type in your password and

use your security key, they still can’t use the

security key’s response to log in to another

website.

As a result of its phishing resistance and general

ease of use, WebAuthn is generally the best 2FA

implementation available for most applications.

(Push-based confirmations on another device

can provide additional features, such as

authenticating specific transactions, but

generally require a specific app be installed on

a mobile device, which is a high bar for many

users.)

2.3 A code sent via another medium

Some two-factor services use an SMS or

emailed code to verify that you have access to a

phone number or email address. These are

riskier because it is relatively easy to divert

SMS messages (by social-engineering your

phone company, by using attacks on SS7, or any

one of several other methods), and email is

often used for password resets (meaning that an

attacker who has access to your email may be

able to both reset your password and bypass the

2FA request).

2.4 Push confirmations

Some systems use an enrolled phone (or other

mobile device) to push a confirmation prompt

that you interact with on your phone. These are

almost always set up by a third-party

authentication provider, as they require

additional infrastructure. These prompts can

include additional information (such as where

you’re logging in to, or what transaction you’re

confirming), which can help confirm those

details “out of band” rather than simply trusting

what a website says. These prompts can be

convenient in some cases, especially if your

users interact with your application extremely

frequently. However, they almost always

require users to download a specific

application, which isn’t desirable for many

uses: this makes them better for cases where out

of band confirmations are important (such as

banking transactions) or where prompts will be

frequent (such as confirming actions by

employees). Because they are almost

exclusively set up only by authentication-

specific providers rather than for a specific

application you’d be developing or testing, this

post largely doesn’t discuss them, but check the

“General 2FA Issues” section for issues that can

apply to them as well.

3. Testing Two-Factor Systems

There are a lot of somewhat subtle things here

that are worth getting right, given the intent of

two-factor authentication as a strong security

feature. Code-based systems have quite a few

Journal of Management & Entrepreneurship

ISSN 2229-5348

UGC Care Group I Journal

Vol-13 Issue-01 April 2024

potential pitfalls, but even applications using

U2F / WebAuthn tokens have some of these

concerns as we’ll see below.

For developers of applications considering

using two-factor authentication: WebAuthn (or

CTAP2 for non-web applications) is the best

current option. It’s difficult to phish users using

this mechanism, and it is resistant to brute-force

attacks. If you use this, be sure to allow users to

enrol multiple devices as a backup. If you can’t

require users to have a FIDO2 device, TOTP is

the most common alternative, and supported by

many applications on various mobile devices.

(Third parties also offer mobile applications,

often with push mechanisms for triggering 2FA

responses, which may be worth a look.) Avoid

using SMS as a two-factor solution, as it is often

vulnerable to hijacking or social-engineering.

Regardless of what you use for your 2FA

method, the list below is worth running

through. For people evaluating applications

with two-factor authentication: here are some

specific areas of problems to check for, how to

check for them, why they’re problematic, and

suggested fixes. A number of these assume the

application is using TOTP or a very similar

protocol, but thanks to Google Authenticator,

it’s pretty common. (Some companies may roll

their own, like Twitter’s S/KEY-inspired

backup codes, but that’s less common.)

Nowadays lots of applications will implement

multiple methods for performing two-factor

authentication. If you’re looking at an

application that does, make sure you test all of

them: sometimes developers make a mistake in

one that they’ve avoided in another (especially

if they were added at different times, or by

different teams). For ease of navigating, the

checks below are broken up into three

categories:

a. General 2FA Issues: these can apply to all

2FA implementations.

b. Authentication Code-Based Issues: these

apply to TOTP, SMS, or other mechanisms that

require you to type in a code.

c. WebAuthn Security Key Issues: these apply

only to WebAuthn security keys.

3.1 General 2FA Issues

These issues and checks can apply to nearly any

two-factor authentication system, regardless of

whether they use WebAuthn, TOTP, or even

something else.

Session State Confusion

Once you’ve validated your password, can you

do anything else in the app with whatever state

your session is in before you complete the 2FA

authentication?

What? Many applications have been retrofitted

to add 2FA support, rather than designed with it

from the ground up. If a user authenticates with

just a password, before finishing 2FA, the

application must track their partial login in

some fashion. In some cases, this may allow an

attacker to authenticate with just a password,

and perform actions as if they were logged in.

Alternatively, some sort of cookie or token

given to the user for temporary access to the

2FA screen may also be useful for something.

(For example, one application I tested gave the

same data for “you are temporarily

authenticated with just a password” and “this

computer is ‘remembered’ and does not require

two-factor authentication”, so renaming the

cookie would completely bypass two-factor

authentication.)

How to test it: This is likely to be somewhat

application specific. If you have source code

and the application consistently uses a specific

authentication mechanism, it may be sufficient

to ensure that the authentication mechanism

works properly in the “in-between” state.

Otherwise, a tool such as wuntee’sAuthz Burp

plugin may help test all endpoints with a session

that has had a password entered but hasn’t yet

had its second factor verified How to fix it:

Ideally, implement a site-wide authentication

handler, and correctly make it only allow access

to the 2FA authentication page when a user is

half-logged-in. Otherwise, ensure that checks

on each action only allow fully authenticated

users.

Does waiting on the two-factor page let you

ignore password changes?

What? When allowing a user to start signing in

with their password and prompting for 2FA,

some applications will simply store that the user

Journal of Management & Entrepreneurship

ISSN 2229-5348

UGC Care Group I Journal

Vol-13 Issue-01 April 2024

is partially logged in. As Luke Berner noticed,

this makes it difficult to recover from a stolen

password: even changing your password may

not keep an attacker from logging in if they had

opened the 2FA login flow before your

password was changed. (In some cases, this is

exploitable even if the victim doesn’t

intentionally enable 2FA – see Luke’s post for

more details.)

How to test it:

1. Open two different browsers and go to log in.

2. Get to the 2FA screen in one browser,

entering the user’s password.

3. In the other browser, log in fully and change

the user’s password.

4. In the first browser, correctly finish 2FA

authentication and try to log in without re-

entering the user’s password.

5. If you can log in with the first browser

without entering the new password, the

application is vulnerable.

How to fix it: When a user’s password changes,

log the timestamp of this change. When starting

the 2FA login process with a correct password,

also store the timestamp of the 2FA process

beginning. Then, upon completing a 2FA login,

reject the login attempt if the 2FA process was

started before the last password change. (If the

application provides a “log off all sessions”

feature, this should also be checked when

finishing the 2FA flow.)

Remember This Computer

Is it possible to forge the “remember this

computer” token? (This is likely different than

the “remember that I’m logged in” token.)

What? Not all 2FA applications will support

such a feature, but if they do, this is obviously

something you should look at more closely.

This is generally just a long-lived cookie with a

randomly-generated value stored in a database,

but it is important to verify that the value is

indeed securely randomly generated, and

different for each user. (Ideally, the token would

be different for each computer, too.

How to test it: You may be able to obtain a

number of “remember this computer” tokens

and compare them to see how they’re

constructed (if there’s any obvious structure).

The token doesn’t technically have to change

from one “remembered computer” to the next

for the same user, so you may need multiple

accounts. (Another implementation would be to

randomly generate a token for each computer,

and store a set of associated computers for each

account. This would allow multiple users to

“remember” the same computer if desirable.)

The easiest way to test this is often by looking

at source code.

How to fix it: Any “remember this computer”

tokens should be generated using a

cryptographically secure random number

generator, and should probably be treated as

long-lived secrets. 128 bits of entropy should be

a decent minimum.

Can you revoke remembered computers?

What? If somebody accidentally sets the

“remember this computer” flag on a shared

computer, can they remove it? Can they do so

remotely – from a different computer? If not,

anyone who can copy that token can bypass

2FA for the life of the token.

How to test it: In this case, the user interface

pretty much needs to support revoking other

computers. It doesn’t have to identify them,

though: some services, for example, simply let

you revoke all previously remembered

computers. Dig around for some option for

invalidating old remembered computers, and

make sure it actually works. (Creating tokens

for two old remembered computers and

ensuring that they’re invalidated should be

sufficient.)

How to fix it: If this option doesn’t exist, it

should be added. Revoking other computers

should be done by wiping any stored

“remembered device” tokens from the account,

possibly replacing them with a newly generated

token if a value is necessary.

Re-prompting

Are you prompted for your password and 2FA

again before disabling 2FA?

What? 2FA provides additional security for an

account. If an attacker is able to gain access to

a victim’s account (such as via XSS or someone

Journal of Management & Entrepreneurship

ISSN 2229-5348

UGC Care Group I Journal

Vol-13 Issue-01 April 2024

leaving a computer unlocked), they may be able

to simply disable 2FA without re-

authenticating. It is also worth mentioning that

a user should enter their password before being

able to enable 2FA as well, so an attacker can’t

simply enable 2FA on a victim’s account and

effectively lock out the victim.

How to test it: Try to disable 2FA. Do you have

to enter your password and use two-factor

authentication again? The two-factor prompt is

more important than the password. (If you

disable the two-factor authentication, the

password is still required to log in.)

How to fix it: The application should require a

password and a two-factor prompt before

allowing a user to disable 2FA on their own

account. Support staff may want or need the

ability to circumvent this restriction, in case

somebody loses their second factor, but normal

users shouldn’t be able to do so.

3.2 Authentication Code-Based Issues

These checks apply to 2FA implementations

that use a code you have to type in manually.

Where possible, it really can be worth migrating

to Web Authn security keys: these keys are

resistant to phishing and have far fewer

potential pitfalls. However, that isn’t always an

option for applications (hardware keys are

sometimes unsuitable, or users may not have

devices that support WebAuthn), so code-based

authentication is still a must in many cases.

Secret Communications

Is the secret secure?

What? Some systems perform 2FA checks via

generating a code that is sent via a SMS text

message or an emailed code. While this is

arguably better than doing nothing, it is worth

considering whether the security of the way the

code is sent matches the threat model of the

application. SMS authentication is generally

considered insecure, and should be avoided in

most cases. Email as a second factor can be

appropriate in some situations, but many

applications also allow password reset via

email, reducing the security of an account to the

security of the associated email address.

How to test it: This is simple: if you get a 2FA

code via SMS, it isn’t being sent securely. If you

get a code via email, it likely isn’t secure either

– or is at least not likely to be more secure than

the password reset mechanism, making 2FA

pointless.

How to fix it: This is harder: you should

carefully consider whether the authentication is

sufficient for the purposes of the application,

and whether there are any mitigating controls.

For example, perhaps you can see your bank

balance with an SMS 2FA code, but can only

make a withdrawal in person, in which case a

SMS may be sufficient for some clients (but

perhaps not others). In general, it is worth

advising your clients to default to more secure

options, even if SMS or email is required by

some customers, and then push to deprecate

those options over time.

Shared Secret

Is the secret any good?

What? Most code-based 2FA systems rely on a

shared secret. If this secret isn’t actually

cryptographically secure, or is very short, an

attacker may be able to guess it. If you have

source code access, this should be easy to

check, but otherwise, try checking the secret (if

you get a QR code, scan it with a barcode

scanner, not just the Google Authenticator app)

for length and apparent randomness – generate

a few, if you can. Testing more than that in a

blackbox assessment is pretty difficult, though.

How to test it: If you can review the source

code, ensure that the secret is being generated

from a secure source of randomness, not merely

a default random number generator. (Most

programming languages’ default random

number generators are fast but predictable,

meaning attackers might be able to figure out

which secrets were assigned to which users.) In

general, these should be 20 bytes long

according to the TOTP spec: longer is fine (but

may cause compatibility issues); shorter secrets

should be avoided for security purposes. If you

can’t get access to the source code, try

generating several secrets for the same or

different accounts. Is each one different? Does

any part of the secret appear to be sequential?

Based on the account information? Otherwise

insecure? (Getting enough secrets to apply

proper entropy estimation is likely to be

difficult, or at least extremely tedious, and may

still not completely answer the question of the

source of the secrets.)

Journal of Management & Entrepreneurship

ISSN 2229-5348

UGC Care Group I Journal

Vol-13 Issue-01 April 2024

How to fix it: Generate secrets from a secure

source of entropy. /dev/urandom is nice, but

language-specific CSPRNGs are sometimes

fine too. Check with a friendly cryptographer if

you’re not sure.

Reuse

Can you reuse a 2FA code? (Log in to the same

account in two browsers with the same code.)

What? The impact here is that someone looking

over your shoulder (or potentially an attacker

who intercepts your request) could reuse a 2FA

code, circumventing the 2FA protection. This

can obviously only happen when an attacker

gets access to a code around the same time

you’re using it, but that’s still a plausible

scenario for many users.

How to test it:

1. Open two different browsers and go to log in.

(Alternatively, two profiles in the same browser

works as well.)

2. Get to the 2FA screen in both browsers.

3. Obtain a valid 2FA code, and use it to log in

with both browsers.

4. If the same code works to log in to both

sessions, the implementation is vulnerable.

How to fix it: When checking to see which code

was generated by the user, store the code’s

timestamp in the user record. When logging the

user in, allow only code that are newer than the

recorded timestamp for the user’s most recent

2FA code. Additionally, an error message to the

user saying that the code has already been used

(rather than simply a generic error) would be

useful, as it gives them the opportunity to notice

the attack.

Timing

How long is a given code valid? How early can

you submit a code?

What? Assuming your codes are time-based,

applications generally support a span of time

for which the codes are valid, to allow people to

type them in slowly, account for clock drift on

phones, and so on. Because new codes are

almost always generated in steps of 30 seconds

(although some systems use 60 seconds), this

means that multiple codes are valid at the same

time. However, each code in the allowable

window is a valid code for the user’s account,

so allowing codes to be valid for an hour means

that lots of codes are valid, and it is

consequently easier to guess a valid code. A

common validity range here is about five

minutes in either direction from the time as set

on the server (or 20 codes total), although

tightening this up to two or three minutes is

nice, at the expense of users with terrible clocks

on their phones. Regardless, the main concern

here is how many codes are valid at a time: the

validity window divided by the time between

new codes. How to test it: How long an old code

is valid: make sure your 2FA generator’s time is

roughly correct, generate a code, and try it after

several minutes, to determine how long it takes

for a code to become unavailable. How early a

code is valid: generally, this window is

symmetric, but if you have source code, you

may be able to determine an actual value.

Otherwise, you will have to try generating

future codes and testing them. The OATH

TOTP generation mechanism is a bit painful to

calculate by hand, but there are JavaScript

pages (see this one for example, but note that

your secret will be leaked to the Google Chart

API if you don’t comment out line 38) that can

help.

How to fix it: It may be appropriate to reduce

the validity window for codes, particularly if

more than 20 codes are valid at any given time.

This can be done by simply adjusting the

number of codes that are tested on the server

side.

Can you save an old code, wait for a new code,

use the new code, and then use the old code?

What? This is a variant of the replay issue noted

above. If the service just bans the current code

(rather than storing the most recent code’s

timestamp and rejecting codes that are that old

or older), this can be an issue. This attack

requires some explanation: if an attacker sees a

user’s 2FA code generation device, they may

see a code that’s older than the one that the user

chooses to enter. (For instance, the user may

think they only have a few seconds to enter the

code, and decide to not use it.) In that case, the

attacker could use the older code.

How to test it:

Journal of Management & Entrepreneurship

ISSN 2229-5348

UGC Care Group I Journal

Vol-13 Issue-01 April 2024

1. Open two different browsers and go to log in.

2. Get to the 2FA screen in both browsers.

3. Obtain a valid 2FA code, and write it down.

Do not use it yet.

4. Wait for the next valid 2FA code, and log in

using it in one browser.

5. In the other browser, try to log in with the old

2FA code that was written down.

6. If you can log in using both sessions, the

application is vulnerable.

How to fix it: The correct fix for this is the same

as that in the Reuse section above.

Lockout

(Test this with a sacrificial account or at the end

of a day – if not the end of a test, lest you find

yourself locked out of testing entirely.)

Does the website lock you out of guessing

codes frequently?

What? There should be some mechanism for

rate-limiting 2FA code guesses. Assuming a

standard six-digit code, each guess generally

has a (validity window size / 1000000) chance

of being correct. Assuming eight codes are valid

at any given time, an attacker would only have

to guess log(0.5)/log(1-(8/1000000)) = 86644

codes to have a 50% chance of guessing a valid

code. While this seems like a large number, it’s

easy to automate. A CAPTCHA may be

worthwhile to limit guesses, but a user should

still probably be notified in some way if many

guesses are being made, as this probably means

that their password has been compromised.

(Most 2FA implementations require a correct

password before prompting for the second

factor.)

How to test it: Attempt to log in with the wrong

2FA code. Do this repeatedly in a short period

of time. If the application starts prompting you

for a CAPTCHA, or locking you out entirely,

it’s not vulnerable.

How to fix it: Track 2FA failures per-user on the

server side. After several consecutive failures,

require a CAPTCHA with the 2FA code. Some

applications will instead implement this as a “if

there have been more than N attempts in M

minutes” requirement as well, which may be

acceptable. Particularly sensitive applications

should strongly consider alerting the user for

several days after any failed 2FA attempt, as an

incorrect attempt still implies an attacker may

have gotten the user’s password.

Can you bypass the lockout by clearing your

cookies? Changing your IP address?

What? Sometimes lockout data is tracked in a

session cookie (a la BAD_ATTEMPTS=2), or

other bad ways of handling this. Sometimes it

is tracked by IP address, by developers who

haven’t considered the existence of botnets or

proxies. Either way, if an attacker can easily

circumvent the lockout mechanism, it’s broken

How to test it: Try clearing your cookies if you

get locked out or are prompted for CAPTCHAs.

If they go away, the application is vulnerable.

Checking for how the lockout information is

tracked on the server is best, and will probably

require source code review.

How to fix it: Any sort of lockout tracking data

should be associated with the account in the

database, not handed to the client, or tracked

based on any identification of the client, as any

of that could be changed.

3.3 WebAuthn Security Key Issues

There’s relatively little that can go wrong with

WebAuthn that is worth testing on the

application side: devices may have

vulnerabilities, but that’s typically out of the

scope of what a web application is defending

against. Instead, there is really only one thing

worth considering that is specific to WebAuthn

implementations:

Multiple Security Key Support

Can the user add multiple security keys to their

account?

What? With code-based 2FA, a user may be

able to back up their secrets (or use an

application that does so automatically), but

WebAuthn devices are deliberately difficult –

ideally, impossible – to back up. As a result,

your users should be able to register multiple

security keys on their account, so that one is

available as a backup in case another gets

destroyed or lost. This might not seem like a

Journal of Management & Entrepreneurship

ISSN 2229-5348

UGC Care Group I Journal

Vol-13 Issue-01 April 2024

security issue as such, but it can certainly

impact the availability of your service for users

who lose their key, and it can even dissuade

others from setting up 2FA in the first place if

they worry about being able to recover from a

lost key.

How to test it: This is relatively simple: in the

account settings, can you add another security

key once one has been added? (Ideally there

would be the ability to add several, not just two,

for more thorough disaster recovery or usage

scenarios.) If not, it’s probably a good idea to

let people add more.

How to fix it: As above, let users add multiple

keys to their account.

4. Conclusions

Two-factor authentication is often a good

additional step for security of systems and

applications. It isn’t a silver bullet, and

there are lots of things that can go wrong.

We’ve seen a high-level overview of

common 2FA mechanisms, and a variety of

potential implementation flaws, as well as

how to test for them and how to fix them. If

you’re writing or testing a two-factor

implementation, hopefully they will be of

use to you.

 If you’re designing a two-factor

implementation, the key takeaways are:

 Use WebAuthn if possible (but allow

people to add multiple devices): it’s

resistant to phishing and removes a lot

of the pitfalls in other methods.

 Double-check the list of issues above

when you’re done to make sure you

haven’t missed something.

 Don’t use SMS for two-factor

authentication.

References

[1]. http://searchsecurity.techtarget.com/definit

ion/multifactor-authentication-MFA.

[2]. McAfee Case Study “Securing the Cloud

with Strong Two-Factor Authentication

through McAfee One Time Password”

http://www.mcafee.com/in/casestudies/cs-

cloudalize.aspx.

[3]. Sharma NA, Farik M. Security gaps in

authentication factor credentials. Int J Sci

Technol Res 2016; 5: 116–120. [Google

Scholar]

[4]. Boyd C, Mathuria A, Stebila D. Protocols

for authentication and key establishment.

2nd ed.Berlin, Heidelberg: Springer, 2020,

p.521. [Google Scholar]

[5]. Wagenen J, V.The benefits of multifactor

authentication in

healthcare, https://healthtechmagazine.net/

article/2018/12/benefits-multifactor-

authentication-healthcare-perfcon (2018,

accessed 4 September 2021).

[6]. Alizai ZA, Tareen NF, Jadoon

I. Improved IoT device authentication
scheme using device capability and
digital signatures. In: 2018

international conference on applied and

engineering mathematics (ICAEM),

Taxila, Pakistan, 04-05 September

2018, pp.1–5. IEEE.
[7]. Newaz AI, Sikder AK, Rahman MA, et

al. A survey on security and privacy

issues in modern healthcare systems:

attacks and defenses. ACM Trans

ComputHealthc 2021; 2: 1–44.

[8]. Himanshu Aora, Kiran Ahuja,

Himanshu Sharma, Kartik Goyal and

Gyanendra Kumar, "Artificial

Intelligence and Machine Learning in

Game Development", Turkish Online

Journal of Qualitative Inquiry (TOJQI),

vol. 12, no. 8, pp. 1153-1158, 2021.

[9]. H. Arora, G. K. Soni, R. K. Kushwaha

and P. Prasoon, "Digital Image Security

Based on the Hybrid Model of Image

Hiding and Encryption", 2021 6th

International Conference on

Communication and Electronics

Systems (ICCES), pp. 1153-1157,

2021.

[10]. K. Ahuja, H. Sekhawat, S. Mishra and

P. Jha, "Machine Learning in Artificial

Intelligence: Towards a Common

Understanding", Turkish Online

Journal of Qualitative Inquiry (TOJQI),

vol. 12, no. 8, pp. 1143-1152, July

2021.

[11]. G. K. Soni, H. Arora, B. Jain, "A Novel

Image Encryption Technique Using

Arnold Transform and Asymmetric

RSA Algorithm", International

Conference on Artificial Intelligence:

http://searchsecurity.techtarget.com/definition/multifactor-authentication-MFA
http://searchsecurity.techtarget.com/definition/multifactor-authentication-MFA
http://www.mcafee.com/in/casestudies/cs-cloudalize.aspx
http://www.mcafee.com/in/casestudies/cs-cloudalize.aspx
https://scholar.google.com/scholar_lookup?journal=Int+J+Sci+TechnolRes&title=Security+gaps+in+authentication+factorcredentials&author=NA+Sharma&author=M+Farik&volume=5&publication_year=2016&pages=116-120&
https://scholar.google.com/scholar_lookup?journal=Int+J+Sci+TechnolRes&title=Security+gaps+in+authentication+factorcredentials&author=NA+Sharma&author=M+Farik&volume=5&publication_year=2016&pages=116-120&
https://scholar.google.com/scholar_lookup?title=Protocols+for+authentication+and+keyestablishment&author=C+Boyd&author=A+Mathuria&author=D+Stebila&publication_year=2020&
https://healthtechmagazine.net/article/2018/12/benefits-multifactor-authentication-healthcare-perfcon
https://healthtechmagazine.net/article/2018/12/benefits-multifactor-authentication-healthcare-perfcon
https://healthtechmagazine.net/article/2018/12/benefits-multifactor-authentication-healthcare-perfcon

Journal of Management & Entrepreneurship

ISSN 2229-5348

UGC Care Group I Journal

Vol-13 Issue-01 April 2024

Advances and Applications 2019.

Algorithms for Intelligent Systems,

Springer, pp. 83-90, 2020.

[12]. Vipin Singh, Manish Choubisa and

Gaurav Kumar Soni, "Enhanced Image

Steganography Technique for Hiding

Multiple Images in an Image Using

LSB Technique", TEST Engineering

Management, vol. 83, pp. 30561-

30565, May-June 2020.

[13]. Jha, P., Dembla, D. & Dubey, W. Deep

learning models for enhancing potato

leaf disease prediction: Implementation

of transfer learning based stacking

ensemble model. Multimed Tools Appl

83, pp. 37839–37858, 2024.

[14]. G. K. Soni, A. Rawat, S. Jain and S. K.

Sharma, "A Pixel-Based Digital

Medical Images Protection Using

Genetic Algorithm with LSB

Watermark Technique", Springer

Smart Systems and IoT: Innovations in

Computing, pp. 483-492, 2020.

[15]. G. Shankar, V. Gupta, G. K. Soni, B. B.

Jain, & P. K. Jangid, “OTA for WLAN

WiFi Application Using CMOS 90nm

Technology”, International Journal of

Intelligent Systems and Applications in

Engineering, 10(1s), pp. 230-233,

2022.

[16]. Babita Jain, Gaurav Soni, Shruti

Thapar, M Rao, "A Review on Routing

Protocol of MANET with its

Characteristics, Applications and

Issues", International Journal of Early

Childhood Special Education, Vol. 14,

Issue. 5, 2022.

[17]. Jha, P., Dembla, D., Dubey, W. (2023).

Crop Disease Detection and

Classification Using Deep Learning-

Based Classifier Algorithm. In:

Rathore, V.S., Piuri, V., Babo, R.,

Ferreira, M.C. (eds) Emerging Trends

in Expert Applications and Security.

ICETEAS 2023. Lecture Notes in

Networks and Systems, vol 682.

Springer, Singapore.

[18]. P. Jha, T. Biswas, U. Sagar and K.

Ahuja, "Prediction with ML paradigm

in Healthcare System," 2021 Second

International Conference on

Electronics and Sustainable

Communication Systems (ICESC), pp.

1334-1342, 2021.

[19]. P. Upadhyay, K. K. Sharma, R.

Dwivedi and P. Jha, "A Statistical

Machine Learning Approach to

Optimize Workload in Cloud Data

Centre," 2023 7th International

Conference on Computing

Methodologies and Communication

(ICCMC), pp. 276-280, 2023.

[20]. H. Arora, M. Kumar, T. Rasool and P.

Panchal, "Facial and Emotional

Identification using Artificial

Intelligence", IEEE 6th International

Conference on Trends in Electronics

and Informatics (ICOEI), pp. 1025-

1030, 2022.

[21]. Himanshu Aora, Kiran Ahuja,

Himanshu Sharma, Kartik Goyal and

Gyanendra Kumar, "Artificial

Intelligence and Machine Learning in

Game Development", Turkish Online

Journal of Qualitative Inquiry (TOJQI),

vol. 12, no. 8, pp. 1153-1158, 2021.

[22]. T. A and U. A, "Generative AI: A

Transformative Force in Business

Intelligence," 2024 2nd International

Conference on Intelligent Data

Communication Technologies and

Internet of Things (IDCIoT), pp. 1234-

1240, 2024.

